![]() |
|||||
![]() |
|||||
![]() |
|||||
Strona startowa Fiddle Faddle« & Screaming Yellow Zonkers«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku Fatburger«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku Food 20 adjectives, ANGIELSKI, !!!!!!!!!!pomoce, słownictwo, food Frommer's Naples and the Amalfi Coast day BY Day, Travel Guides- Przewodniki (thanx angielski i stuff) Frommer s Sicily Day By Day, Travel Guides- Przewodniki (thanx angielski i stuff) Fuyumi Ono - Twelve Kingdoms 01 - Shadow of the Moon a Sea of Shadows, Angielskie [EN](4)(2) Farago&Zwijnenberg (eds) - Compelling Visuality ~ The work of art in and out of history, sztuka i nie tylko po angielsku Forex Study Book For Successful Foreign Exchange Dealing, gielda walutowa, Angielskie Fabulous Creatures Mythical Monsters and Animal Power Symbols-A Handbook, Angielski Farkas-Ukryte rzeczywistości, âşâEZOTERYKA,samouzdrawianie, psychologiaâ |
Fundamentals of Statistics - 2e - Chapter07, Angielskie [EN](4)(2)[ Pobierz całość w formacie PDF ]TheNormalProbability Distribution CHAPTER Outline 7. 1 PropertiesoftheNormalDistribution 7. 2 TheStandardNormalDistribution 7. 3 ApplicationsoftheNormalDistribution 7. 4 AssessingNormality 7. 5 TheNormalApproximationtotheBinomial ProbabilityDistribution " ChapterReview " CaseStudy:ATaleofBlood,Chemistry,and Health(OnCD) DECISIONS YouareinterestedinstartingyourownMENSA-typeclub.Toqualify fortheclub,thepotentialmembermusthaveintelligencethatisinthe top20%ofallpeople.Youmustdecidethebaselinescorethatallowsan individualtoqualify.SeetheDecisionsprojectonpage359. PuttingItAllTogether InChapter6,weintroduceddiscreteprobabilitydistri- butionsand,inparticular,thebinomialprobabilitydis- tribution.Wecomputedprobabilitiesforthisdiscrete distributionusingitsprobabilitydistributionfunction. However,wecouldalsodeterminetheprobabilityof anydiscreterandomvariablefromitsprobabilityhis- togram.Forexample,thefigureshowstheprobability histogramforthebinomialrandomvariable X with and Fromtheprobabilityhistogram,wecansee Noticethatthewidthofeachrectanglein theprobabilityhistogramis1.Sincetheareaofarectan- gleequalsheighttimeswidth,wecanthinkof P (1)asthe areaoftherectanglecorrespondingto Thinking ofprobabilityinthisfashionmakesthetransitionfrom computingdiscreteprobabilitiestocontinuousprobabili- tiesmucheasier. Inthischapter,wediscusstwocontinuousdistribu- tions, theuniformdistribution and thenormaldistribution . Thegreaterpartofthediscussionwillfocusonthenor- maldistribution,whichhasmanyusesandapplications. BinomialProbabilityHistogram; n # 5, p # 0.35 = 0.35. 0.4 0.3 L 0.31. 0.2 0.1 = 1. 012345 318 Section7.1PropertiesofNormalDistribution 319 7.1 PropertiesoftheNormalDistribution PreparingforThisSection Beforegettingstarted,reviewthefollowing: • Continuousvariable(Section1.1,p.7) • Rulesforadiscreteprobabilitydistribution(Section 6.1,p.287) • Z -score(Section3.4,pp.149–150) • TheEmpiricalRule(Section3.2,pp.131–132) Objectives Understandtheuniformprobabilitydistribution Graphanormalcurve Statethepropertiesofthenormalcurve Understandtheroleofareainthenormaldensity function Understandtherelationbetweenanormalrandom variableandastandardnormalrandomvariable UnderstandtheUniformProbability Distribution Weillustrateauniformdistributionusinganexample.Usingtheuniformdistri- butionmakesiteasytoseetherelationbetweenareaandprobability. EXAMPLE1 IllustratingtheUniformDistribution Imaginethatafriendofyoursisalwayslate.Lettherandomvariable X rep- resentthetimefromwhenyouaresupposedtomeetyourfrienduntilhe showsup.Furthersupposethatyourfriendcouldbeontime orup to30minuteslate withall1-minuteintervalsoftimesbetween and equallylikely.Thatis,yourfriendisjustaslikelytobe from3to4minuteslateasheistobe25to26minuteslate.Therandomvari- able X canbeanyvalueintheintervalfrom0to30,thatis, Be- causeanytwointervalsofequallengthbetween0and30,inclusive,are equallylikely,therandomvariable X issaidtofollowa uniformprobability distribution . = 30 2 = 30 … 30. Whenwecomputeprobabilitiesfordiscreterandomvariables,weusually substitutethevalueoftherandomvariableintoaformula. Thingsarenotaseasyforcontinuousrandomvariables.Sincethereare aninfinitenumberofpossibleoutcomesforcontinuousrandomvariables theprobabilityofobservingaparticularvalueofacontinuousrandomvari- ableiszero.Forexample,theprobabilitythatyourfriendisexactly 12.9438823minuteslateiszero.Thisresultisbasedonthefactthatclassical probabilityisfoundbydividingthenumberofwaysaneventcanoccurby thetotalnumberofpossibilities.Thereisonewaytoobserve12.9438823, andthereareaninfinitenumberofpossiblevaluesbetween0and30,sowe getaprobabilitythatiszero.Toresolvethisproblem,wecomputeprobabil- itiesofcontinuousrandomvariablesoveranintervalofvalues.Forexample, wemightcomputetheprobabilitythatyourfriendisbetween10and15min- uteslate.Tofindprobabilitiesforcontinuousrandomvariables,weuse probabilitydensityfunctions . 320 Chapter7TheNormalProbabilityDistribution Definition A probabilitydensityfunction isanequationusedtocompute probabilitiesofcontinuousrandomvariablesthatmustsatisfythefollowing twoproperties. 1. Thetotalareaunderthegraphoftheequationoverallpossiblevaluesof therandomvariablemustequal1. 2. Theheightofthegraphoftheequationmustbegreaterthanorequalto 0forallpossiblevaluesoftherandomvariable.Thatis,thegraphofthe equationmustlieonorabovethehorizontalaxisforallpossiblevalues oftherandomvariable. InOtherWords Tofindprobabilitiesforcontinuous randomvariables,wedonotuse probabilitydistributionfunctions(aswe didfordiscreterandomvariables). Instead,weuseprobabilitydensity functions.Theword density isused becauseitreferstothenumberof individualsperunitofarea. Property1issimilartotherulefordiscreteprobabilitydistributionsthat statedthesumoftheprobabilitiesmustaddupto1.Property2issimilartothe rulethatstatedallprobabilitiesmustbegreaterthanorequalto0. Figure1illustratesthepropertiesfortheexampleaboutyourfriendwhois alwayslate.Sinceallpossiblevaluesoftherandomvariablebetween0and30 areequallylikely,thegraphoftheprobabilitydensityfunctionforuniformran- domvariablesisarectangle.Becausetherandomvariableisanynumberbe- tween0and30inclusive,thewidthoftherectangleis30.Sincetheareaunder thegraphoftheprobabilitydensityfunctionmustequal1,andtheareaofarec- tangleequalsheighttimeswidth,theheightoftherectanglemustbe 1 30 . Figure1 UniformDensityFunction 1 30 Area $ 30 X RandomVariable(time) Apressingquestionremains:Howdoweusedensityfunctionstofindprob- abilitiesofcontinuousrandomvariables? Theareaunderthegraphofadensityfunctionoversomeintervalrepresents theprobabilityofobservingavalueoftherandomvariableinthatinterval. Thefollowingexampleillustratesthisstatement. EXAMPLE2 AreaasaProbability Problem : RefertothesituationpresentedinExample1.Whatistheproba- bilitythatyourfriendwillbebetween10and20minuteslatethenexttimeyou meethim? Approach : Figure1presentedthegraphofthedensityfunction.Weneedto findtheareaunderthegraphbetween10and20minutes. Solution : Figure2presentsthegraphofthedensityfunctionwiththeareawe wishtofindshadedingreen. Section7.1PropertiesoftheNormalDistribution 321 Figure2 1 30 0 10 20 3 0 1 30 Thewidthoftherectangleis10anditsheightis Therefore,thearea 1 30 b 10 a between10and20is Theprobabilitythatyourfriendisbetween 10and20minuteslateis NowWorkProblem13. Weintroducedtheuniformdensityfunctionsothatwecouldassociate probabilitywitharea.Wearenowbetterpreparedtodiscussthemostpopular continuousdistribution,thenormaldistribution. GraphaNormalCurve Manycontinuousrandomvariables,suchasIQscores,birthweightsofbabies, orweightsofM&Ms,haverelativefrequencyhistogramsthathaveashapesim- ilartoFigure3.Relativefrequencyhistogramsthathaveashapesimilarto Figure3aresaidtohavetheshapeofa normalcurve Figure3 Definition Acontinuousrandomvariableis normallydistributed orhas a normalprobabilitydistribution ifitsrelativefrequencyhistogram oftherandomvariablehastheshapeofanormalcurve. Figure4showsanormalcurve,demonstratingtherole and playin drawingthecurve.LookbackatFigure5onpage113inSection3.1.Foranydis- tribution,themoderepresentsthe“highpoint”ofthegraphofthedistribution. Themedianrepresentsthepointwhere50%oftheareaunderthedistribution istotheleftand50%oftheareaunderthedistributionistotheright.Themean representsthebalancingpointofthegraphofthedistribution(seeFigure2on page109inSection3.1).Forsymmetricdistributions,suchasthenormaldistri- bution,the Becauseofthis,themean, isthe“high point”ofthegraphofthedistribution. Thepointsat and arethe inflectionpoints onthenor- malcurve.The inflectionpoints arethepointsonthecurvewherethecurvature Figure4 Inflection point Inflection point mean = median = mode. # smm 322 Chapter7TheNormalProbabilityDistribution ofthegraphchanges.Totheleftof andtotherightof thecurveisdrawnupward or .Inbetween and thecurveisdrawndownward .* Figure5showshowchangesinandchangethepositionorshapeofanormal curve.InFigure5(a),twonormaldensitycurvesaredrawnwiththelocationofthe inflectionpointslabeled.Onedensitycurvehas andtheotherhas Wecanseethatincreasingthemeanfrom0to3causedthegraphto shiftthreeunitstotheright.InFigure5(b),twonormaldensitycurvesaredrawn, againwiththeinflectionpointslabeled.Onedensitycurvehas and theotherhas Wecanseethatincreasingthestandarddeviationfrom 1to2causesthegraphtobecomeflatterandmorespreadout. HistoricalNote KarlPearsoncoinedthephrase normalcurve .Hedidnotdothisto implythatadistributionthatisnot normalis abnormal. Rather,Pearson wantedtoavoidgivingthenameof thedistributionapropername,such asGaussian(asinCarlFriedrich Gauss). = 0, s = 1, = 3, s = 1. = 0, s = 1, = 0, s = 2. Figure5 m $ 0, s $ 1 $ 0, s $ 3, s $ 1 m $ 0, s # 1 0 3 4 # 4 0 2 4 6 (a) (b) NowWorkProblem25. StatethePropertiesoftheNormalCurve Thenormalprobabilitydensityfunctionsatisfiesalltherequirementsthatare necessarytohaveaprobabilitydistribution.Welistthepropertiesofthenormal densitycurvenext. HistoricalNote PropertiesoftheNormalDensityCurve 1. Itissymmetricaboutitsmean, 2. Because thehighestpointoccursat 3. Ithasinflectionpointsat and 4. Theareaunderthecurveis1. 5. Theareaunderthecurvetotherightof equalstheareaunderthe curvetotheleftof whichequals 6. As x increases,withoutbound(getslargerandlarger),thegraphap- proaches,butneverreaches,thehorizontalaxis.As x decreaseswithout bound(getslargerandlargerinthenegativedirection),thegraphap- proaches,butneverreaches,thehorizontalaxis. 7. TheEmpiricalRule:Approximately68%oftheareaunderthenormal curveisbetween and Approximately95%of theareaunderthenormalcurveisbetween and Approximately99.7%oftheareaunderthenormalcurve isbetween and SeeFigure6. AbrahamdeMoivrewasbornin FranceonMay26,1667.Heisknown asagreatcontributortotheareasof probabilityandtrigonometry.In1685, hemovedtoEngland.DeMoivrewas electedafellowoftheRoyalSociety in1697.Hewaspartofthe commissiontosettlethedispute betweenNewtonandLeibniz regardingwhowasthediscovererof calculus.Hepublished TheDoctrine ofChance in1718.In1733,he developedtheequationthatdescribes thenormalcurve.Unfortunately,de Moivrehadadifficulttimebeing acceptedinEnglishsociety(perhaps duetohisaccent)andwasableto makeonlyameagerlivingtutoring mathematics.Aninterestingpieceof informationregardingdeMoivre;he correctlypredictedthedayofhis death,November27,1754. mean = median = mode, *Theverticalscaleonthegraph,whichindicatesdensity,ispurposelyomitted.Theverticalscale, whileimportant,willnotplayaroleinanyofthecomputationsusingthiscurve. [ Pobierz całość w formacie PDF ] |
||||
![]() |
|||||
Wszelkie Prawa Zastrzeżone! Jedyną nadzieją jest... nadzieja. Design by SZABLONY.maniak.pl. |
![]() |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |