Strona startowa
Fiddle Faddle« & Screaming Yellow Zonkers«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku
Fatburger«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku
Food 20 adjectives, ANGIELSKI, !!!!!!!!!!pomoce, słownictwo, food
Frommer's Naples and the Amalfi Coast day BY Day, Travel Guides- Przewodniki (thanx angielski i stuff)
Frommer s Sicily Day By Day, Travel Guides- Przewodniki (thanx angielski i stuff)
Fuyumi Ono - Twelve Kingdoms 01 - Shadow of the Moon a Sea of Shadows, Angielskie [EN](4)(2)
Farago&Zwijnenberg (eds) - Compelling Visuality ~ The work of art in and out of history, sztuka i nie tylko po angielsku
Forex Study Book For Successful Foreign Exchange Dealing, gielda walutowa, Angielskie
Fabulous Creatures Mythical Monsters and Animal Power Symbols-A Handbook, Angielski
Farkas-Ukryte rzeczywistości, ►⚕EZOTERYKA,samouzdrawianie, psychologia⚕
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • mexxo.keep.pl

  • Fundamentals of Statistics - 2e - Chapter07, Angielskie [EN](4)(2)

    [ Pobierz całość w formacie PDF ]
    TheNormalProbability
    Distribution
    CHAPTER
    Outline
    7. 1
    PropertiesoftheNormalDistribution
    7. 2
    TheStandardNormalDistribution
    7. 3
    ApplicationsoftheNormalDistribution
    7. 4
    AssessingNormality
    7. 5
    TheNormalApproximationtotheBinomial
    ProbabilityDistribution
    "
    ChapterReview
    "
    CaseStudy:ATaleofBlood,Chemistry,and
    Health(OnCD)
    DECISIONS
    YouareinterestedinstartingyourownMENSA-typeclub.Toqualify
    fortheclub,thepotentialmembermusthaveintelligencethatisinthe
    top20%ofallpeople.Youmustdecidethebaselinescorethatallowsan
    individualtoqualify.SeetheDecisionsprojectonpage359.
    PuttingItAllTogether
    InChapter6,weintroduceddiscreteprobabilitydistri-
    butionsand,inparticular,thebinomialprobabilitydis-
    tribution.Wecomputedprobabilitiesforthisdiscrete
    distributionusingitsprobabilitydistributionfunction.
    However,wecouldalsodeterminetheprobabilityof
    anydiscreterandomvariablefromitsprobabilityhis-
    togram.Forexample,thefigureshowstheprobability
    histogramforthebinomialrandomvariable
    X
    with
    and
    Fromtheprobabilityhistogram,wecansee
    Noticethatthewidthofeachrectanglein
    theprobabilityhistogramis1.Sincetheareaofarectan-
    gleequalsheighttimeswidth,wecanthinkof
    P
    (1)asthe
    areaoftherectanglecorrespondingto Thinking
    ofprobabilityinthisfashionmakesthetransitionfrom
    computingdiscreteprobabilitiestocontinuousprobabili-
    tiesmucheasier.
    Inthischapter,wediscusstwocontinuousdistribu-
    tions,
    theuniformdistribution
    and
    thenormaldistribution
    .
    Thegreaterpartofthediscussionwillfocusonthenor-
    maldistribution,whichhasmanyusesandapplications.
    BinomialProbabilityHistogram;
    n
    #
    5,
    p
    #
    0.35
    =
    0.35.
    0.4
    0.3
    L
    0.31.
    0.2
    0.1
    =
    1.
    012345
    318
     Section7.1PropertiesofNormalDistribution
    319
    7.1
    PropertiesoftheNormalDistribution
    PreparingforThisSection
    Beforegettingstarted,reviewthefollowing:

    Continuousvariable(Section1.1,p.7)

    Rulesforadiscreteprobabilitydistribution(Section
    6.1,p.287)

    Z
    -score(Section3.4,pp.149–150)

    TheEmpiricalRule(Section3.2,pp.131–132)
    Objectives
    Understandtheuniformprobabilitydistribution
    Graphanormalcurve
    Statethepropertiesofthenormalcurve
    Understandtheroleofareainthenormaldensity
    function
    Understandtherelationbetweenanormalrandom
    variableandastandardnormalrandomvariable
    UnderstandtheUniformProbability
    Distribution
    Weillustrateauniformdistributionusinganexample.Usingtheuniformdistri-
    butionmakesiteasytoseetherelationbetweenareaandprobability.
    EXAMPLE1
    IllustratingtheUniformDistribution
    Imaginethatafriendofyoursisalwayslate.Lettherandomvariable
    X
    rep-
    resentthetimefromwhenyouaresupposedtomeetyourfrienduntilhe
    showsup.Furthersupposethatyourfriendcouldbeontime orup
    to30minuteslate withall1-minuteintervalsoftimesbetween
    and equallylikely.Thatis,yourfriendisjustaslikelytobe
    from3to4minuteslateasheistobe25to26minuteslate.Therandomvari-
    able
    X
    canbeanyvalueintheintervalfrom0to30,thatis, Be-
    causeanytwointervalsofequallengthbetween0and30,inclusive,are
    equallylikely,therandomvariable
    X
    issaidtofollowa
    uniformprobability
    distribution
    .
    =
    30
    2
    =
    30

    30.
    Whenwecomputeprobabilitiesfordiscreterandomvariables,weusually
    substitutethevalueoftherandomvariableintoaformula.
    Thingsarenotaseasyforcontinuousrandomvariables.Sincethereare
    aninfinitenumberofpossibleoutcomesforcontinuousrandomvariables
    theprobabilityofobservingaparticularvalueofacontinuousrandomvari-
    ableiszero.Forexample,theprobabilitythatyourfriendisexactly
    12.9438823minuteslateiszero.Thisresultisbasedonthefactthatclassical
    probabilityisfoundbydividingthenumberofwaysaneventcanoccurby
    thetotalnumberofpossibilities.Thereisonewaytoobserve12.9438823,
    andthereareaninfinitenumberofpossiblevaluesbetween0and30,sowe
    getaprobabilitythatiszero.Toresolvethisproblem,wecomputeprobabil-
    itiesofcontinuousrandomvariablesoveranintervalofvalues.Forexample,
    wemightcomputetheprobabilitythatyourfriendisbetween10and15min-
    uteslate.Tofindprobabilitiesforcontinuousrandomvariables,weuse
    probabilitydensityfunctions
    .
      320
    Chapter7TheNormalProbabilityDistribution
    Definition
    A
    probabilitydensityfunction
    isanequationusedtocompute
    probabilitiesofcontinuousrandomvariablesthatmustsatisfythefollowing
    twoproperties.
    1.
    Thetotalareaunderthegraphoftheequationoverallpossiblevaluesof
    therandomvariablemustequal1.
    2.
    Theheightofthegraphoftheequationmustbegreaterthanorequalto
    0forallpossiblevaluesoftherandomvariable.Thatis,thegraphofthe
    equationmustlieonorabovethehorizontalaxisforallpossiblevalues
    oftherandomvariable.
    InOtherWords
    Tofindprobabilitiesforcontinuous
    randomvariables,wedonotuse
    probabilitydistributionfunctions(aswe
    didfordiscreterandomvariables).
    Instead,weuseprobabilitydensity
    functions.Theword
    density
    isused
    becauseitreferstothenumberof
    individualsperunitofarea.
    Property1issimilartotherulefordiscreteprobabilitydistributionsthat
    statedthesumoftheprobabilitiesmustaddupto1.Property2issimilartothe
    rulethatstatedallprobabilitiesmustbegreaterthanorequalto0.
    Figure1illustratesthepropertiesfortheexampleaboutyourfriendwhois
    alwayslate.Sinceallpossiblevaluesoftherandomvariablebetween0and30
    areequallylikely,thegraphoftheprobabilitydensityfunctionforuniformran-
    domvariablesisarectangle.Becausetherandomvariableisanynumberbe-
    tween0and30inclusive,thewidthoftherectangleis30.Sincetheareaunder
    thegraphoftheprobabilitydensityfunctionmustequal1,andtheareaofarec-
    tangleequalsheighttimeswidth,theheightoftherectanglemustbe
    1
    30
    .
    Figure1
    UniformDensityFunction
    1
    30
    Area
    $
    30
    X
    RandomVariable(time)
    Apressingquestionremains:Howdoweusedensityfunctionstofindprob-
    abilitiesofcontinuousrandomvariables?
    Theareaunderthegraphofadensityfunctionoversomeintervalrepresents
    theprobabilityofobservingavalueoftherandomvariableinthatinterval.
    Thefollowingexampleillustratesthisstatement.
    EXAMPLE2
    AreaasaProbability
    Problem
    :
    RefertothesituationpresentedinExample1.Whatistheproba-
    bilitythatyourfriendwillbebetween10and20minuteslatethenexttimeyou
    meethim?
    Approach
    :
    Figure1presentedthegraphofthedensityfunction.Weneedto
    findtheareaunderthegraphbetween10and20minutes.
    Solution
    :
    Figure2presentsthegraphofthedensityfunctionwiththeareawe
    wishtofindshadedingreen.
     Section7.1PropertiesoftheNormalDistribution
    321
    Figure2
    1
    30
    0
    10
    20
    3 0
    1
    30
    Thewidthoftherectangleis10anditsheightis Therefore,thearea
    1
    30
    b
    10
    a
    between10and20is Theprobabilitythatyourfriendisbetween
    10and20minuteslateis
    NowWorkProblem13.
    Weintroducedtheuniformdensityfunctionsothatwecouldassociate
    probabilitywitharea.Wearenowbetterpreparedtodiscussthemostpopular
    continuousdistribution,thenormaldistribution.
    GraphaNormalCurve
    Manycontinuousrandomvariables,suchasIQscores,birthweightsofbabies,
    orweightsofM&Ms,haverelativefrequencyhistogramsthathaveashapesim-
    ilartoFigure3.Relativefrequencyhistogramsthathaveashapesimilarto
    Figure3aresaidtohavetheshapeofa
    normalcurve
    Figure3
    Definition
    Acontinuousrandomvariableis
    normallydistributed
    orhas a
    normalprobabilitydistribution
    ifitsrelativefrequencyhistogram
    oftherandomvariablehastheshapeofanormalcurve.
    Figure4showsanormalcurve,demonstratingtherole and playin
    drawingthecurve.LookbackatFigure5onpage113inSection3.1.Foranydis-
    tribution,themoderepresentsthe“highpoint”ofthegraphofthedistribution.
    Themedianrepresentsthepointwhere50%oftheareaunderthedistribution
    istotheleftand50%oftheareaunderthedistributionistotheright.Themean
    representsthebalancingpointofthegraphofthedistribution(seeFigure2on
    page109inSection3.1).Forsymmetricdistributions,suchasthenormaldistri-
    bution,the Becauseofthis,themean, isthe“high
    point”ofthegraphofthedistribution.
    Thepointsat and arethe
    inflectionpoints
    onthenor-
    malcurve.The
    inflectionpoints
    arethepointsonthecurvewherethecurvature
    Figure4
    Inflection
    point
    Inflection
    point
    mean
    =
    median
    =
    mode.
    #
    smm
      322
    Chapter7TheNormalProbabilityDistribution
    ofthegraphchanges.Totheleftof andtotherightof
    thecurveisdrawnupward or .Inbetween and
    thecurveisdrawndownward .*
    Figure5showshowchangesinandchangethepositionorshapeofanormal
    curve.InFigure5(a),twonormaldensitycurvesaredrawnwiththelocationofthe
    inflectionpointslabeled.Onedensitycurvehas andtheotherhas
    Wecanseethatincreasingthemeanfrom0to3causedthegraphto
    shiftthreeunitstotheright.InFigure5(b),twonormaldensitycurvesaredrawn,
    againwiththeinflectionpointslabeled.Onedensitycurvehas and
    theotherhas Wecanseethatincreasingthestandarddeviationfrom
    1to2causesthegraphtobecomeflatterandmorespreadout.
    HistoricalNote
    KarlPearsoncoinedthephrase
    normalcurve
    .Hedidnotdothisto
    implythatadistributionthatisnot
    normalis
    abnormal.
    Rather,Pearson
    wantedtoavoidgivingthenameof
    thedistributionapropername,such
    asGaussian(asinCarlFriedrich
    Gauss).
    =
    0,
    s
    =
    1,
    =
    3,
    s
    =
    1.
    =
    0,
    s
    =
    1,
    =
    0,
    s
    =
    2.
    Figure5
    m
    $
    0,
    s
    $
    1
    $
    0,
    s
    $
    3,
    s
    $
    1
    m
    $
    0,
    s
    #
    1
    0
    3
    4
    #
    4
    0
    2
    4
    6
    (a)
    (b)
    NowWorkProblem25.
    StatethePropertiesoftheNormalCurve
    Thenormalprobabilitydensityfunctionsatisfiesalltherequirementsthatare
    necessarytohaveaprobabilitydistribution.Welistthepropertiesofthenormal
    densitycurvenext.
    HistoricalNote
    PropertiesoftheNormalDensityCurve
    1.
    Itissymmetricaboutitsmean,
    2.
    Because thehighestpointoccursat
    3.
    Ithasinflectionpointsat and
    4.
    Theareaunderthecurveis1.
    5.
    Theareaunderthecurvetotherightof equalstheareaunderthe
    curvetotheleftof whichequals
    6.
    As
    x
    increases,withoutbound(getslargerandlarger),thegraphap-
    proaches,butneverreaches,thehorizontalaxis.As
    x
    decreaseswithout
    bound(getslargerandlargerinthenegativedirection),thegraphap-
    proaches,butneverreaches,thehorizontalaxis.
    7.
    TheEmpiricalRule:Approximately68%oftheareaunderthenormal
    curveisbetween and Approximately95%of
    theareaunderthenormalcurveisbetween and
    Approximately99.7%oftheareaunderthenormalcurve
    isbetween and SeeFigure6.
    AbrahamdeMoivrewasbornin
    FranceonMay26,1667.Heisknown
    asagreatcontributortotheareasof
    probabilityandtrigonometry.In1685,
    hemovedtoEngland.DeMoivrewas
    electedafellowoftheRoyalSociety
    in1697.Hewaspartofthe
    commissiontosettlethedispute
    betweenNewtonandLeibniz
    regardingwhowasthediscovererof
    calculus.Hepublished
    TheDoctrine
    ofChance
    in1718.In1733,he
    developedtheequationthatdescribes
    thenormalcurve.Unfortunately,de
    Moivrehadadifficulttimebeing
    acceptedinEnglishsociety(perhaps
    duetohisaccent)andwasableto
    makeonlyameagerlivingtutoring
    mathematics.Aninterestingpieceof
    informationregardingdeMoivre;he
    correctlypredictedthedayofhis
    death,November27,1754.
    mean
    =
    median
    =
    mode,
    *Theverticalscaleonthegraph,whichindicatesdensity,ispurposelyomitted.Theverticalscale,
    whileimportant,willnotplayaroleinanyofthecomputationsusingthiscurve.
      [ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • rafalstec.xlx.pl
  • 
    Wszelkie Prawa Zastrzeżone! Jedyną nadzieją jest... nadzieja. Design by SZABLONY.maniak.pl.