Strona startowa
Fiddle Faddle« & Screaming Yellow Zonkers«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku
Fatburger«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku
Food 20 adjectives, ANGIELSKI, !!!!!!!!!!pomoce, słownictwo, food
Frommer's Naples and the Amalfi Coast day BY Day, Travel Guides- Przewodniki (thanx angielski i stuff)
Frommer s Sicily Day By Day, Travel Guides- Przewodniki (thanx angielski i stuff)
Fuyumi Ono - Twelve Kingdoms 01 - Shadow of the Moon a Sea of Shadows, Angielskie [EN](4)(2)
Farago&Zwijnenberg (eds) - Compelling Visuality ~ The work of art in and out of history, sztuka i nie tylko po angielsku
Forex Study Book For Successful Foreign Exchange Dealing, gielda walutowa, Angielskie
Fabulous Creatures Mythical Monsters and Animal Power Symbols-A Handbook, Angielski
Functioning in the Real World Precalculus - Chapter 06, Angielskie [EN](4)(2)
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • mexxo.keep.pl

  • Fundamentals of Statistics - Chapter12, Angielskie [EN](4)(2)

    [ Pobierz całość w formacie PDF ]
    12
    Additional
    InferentialProcedures
    CHAPTER
    Outline
    12.1
    Goodness-of-FitTest
    12.2
    TestsforIndependenceandtheHomogeneityof
    Proportions
    12.3
    TestingtheSignificanceoftheLeast-Squares
    RegressionModel
    12.4
    ConfidenceandPredictionIntervals
    "
    ChapterReview
    "
    CaseStudy:FeelingLucky?Well,AreYou?
    (OnCD)
    DECISIONS
    Aretherebenefitstoattendingcollege?Ifso,whatarethey?SeetheDecisions
    projectonpage573.
    PuttingItAllTogether
    InChapters9–11,weintroducedstatisticalmethodsthat
    canbeusedtotesthypothesesregardingapopulation
    parametersuchasor
    p
    .Thischaptercanbeconsidered
    intwoparts.Thefirstpart,Sections12.1and12.2,intro-
    ducesinferenceusingthechi-squaredistribution.
    Often,ratherthanbeinginterestedintesting a
    hypothesesregardingaparameterofaprobabilitydistri-
    bution,weareinterestedintestinghypothesesregarding
    theentireprobabilitydistribution.Forexample,wemight
    wishtotestwhetherthedistributionofcolorsinabagof
    plainM&Mcandiesis13%brown,14%yellow,13%red,
    20%orange,24%blue,and16%green.Weintroduce
    methodsfortestinghypothesessuchasthisinSection12.1.
    InSection12.2,wediscussamethodthatcanbeused
    todeterminewhethertwovariablesareindependentbased
    onasample.WeconcludeSection12.2byintroducingtests
    forhomogeneity.Thisprocedureisusedtocompare
    proportionsfromtwoormorepopulations.Itisanexten-
    sionofthetwo-sample
    z
    -testforproportionsdiscussedin
    Section11.3.
    Thesecondpartofthischapterextendsinferential
    statisticstotheleast-squaresregressionline.Sections
    12.3and12.4introduceinferentialmethodsthatcanbe
    usedontheleast-squaresregressionline.
    InChapter4,wepresentedmethodsfordescribing
    therelationbetweentwovariables-bivariatedata.
    InSection12.3,weusethemethodsofhypothesis
    testingfirstpresentedinChapter10totestwhethera
    linearrelationexistsbetweentwoquantitativevariables.
    InSection12.4,weconstructconfidenceintervals
    aboutthepredictedvalueoftheleast-squaresregression
    line.
    550
    Section12.1Goodness-of-FitTest
    551
    12.1
    Goodness-of-FitTest
    PreparingforThisSection
    Beforegettingstarted,reviewthefollowing:

    Expectedvalue(Section6.1,pp.291–292)

    Meanofabinomialrandomvariable(Section6.2,
    pp.305–306)

    Mutuallyexclusive(Section5.2,pp.238–241)
    Objective
    Performagoodness-of-fittest
    PerformaGoodness-of-FitTest
    Inthissection,wepresentaprocedurethatcanbeusedtotesthypothesesre-
    gardingaprobabilitydistribution.Forexample,wemightwanttotestwhether
    thedistributionofplainM&Mcandiesinabagis13%brown,14%yellow,13%
    red,20%orange,24%blue,and16%green.Orwemightwanttotestifthe
    numberofhitsaplayergetsinhisnextfourat-batsfollowsabinomialdistribu-
    tionwith and
    Weusethesymbol chi-square,pronounced“kigh-square”(torhyme
    with“sky-square”),torepresentvaluesofthechi-squaredistribution.Wecan
    findcriticalvaluesofthechi-squaredistributioninTableVIinAppendixAof
    thetext.BeforediscussinghowtoreadTableVI,weintroducecharacteristicsof
    thechi-squaredistribution.
    =
    0.298.
    Figure1
    CharacteristicsoftheChi-SquareDistribution
    1.
    Itisnotsymmetric.
    2.
    Theshapeofthechi-squaredistributiondependsonthedegreesof
    freedom,justlikeStudent’s
    t
    -distribution.
    3.
    Asthenumberofdegreesoffreedomincreases,thechi-squaredistribu-
    tionbecomesmoresymmetric,asillustratedinFigure1.
    4.
    Thevaluesof arenonnegative.Thatis,thevaluesof aregreater
    thanorequalto0.
    with2degreesoffreedom
    with5degreesoffreedom
    with10degreesoffreedom
    0.2
    with15degreesoffreedom
    with30degreesoffreedom
    0.1
    0
    1 0
    2 0
    3 0
    4 0
    5 0
    TableVIisstructuredsimilarlytoTableVforthe
    t
    -distribution.Theleftcol-
    umnrepresentsthedegreesoffreedom,andthetoprowrepresentsthearea
    underthechi-squaredistributiontotherightofthecriticalvalue.Weusetheno-
    tation todenotethecritical suchthattheareaunderthechi-square
    distributiontotherightof is
    -value
    EXAMPLE1
    FindingCriticalValuesfortheChi-SquareDistribution
    Problem
    :
    Findthecriticalvaluesthatseparatethemiddle90%ofthechi-square
    distributionfromthe5%areaineachtail,assuming15degreesoffreedom.
    Approach
    :
    Weperformthefollowingstepstoobtainthecriticalvalues.
    Step1
    Figure2
    Area
    $
    0.05
    Area
    $
    0.05
    :
    Drawachi-squaredistributionwiththecriticalvaluesandareaslabeled.
    Step2
    :
    UseTableVItofindthecriticalvalues.
    Area
    $
    0.90
    Solution
    Step1
    :
    Figure2showsthechi-squaredistributionwith15degreesoffreedom
    andtheunknowncriticalvalueslabeled.Theareatotherightof is0.05.The
    areatotherightof
    Step2
    :
    Figure3showsapartialrepresentationofTableVI.Therowcontaining
    15degreesoffreedomisboxed.Thecolumnscorrespondingtoanareatothe
    x
    0.95
    x
    0.05
    x
    2
    2
    x
    0.05
    2
    0.95
    is0.95.
      552
    Chapter12AdditionalInferentialProcedures
    rightof0.95and0.05arealsoboxed.Thecriticalvaluesare and
    x
    0.95
    =
    7.261
    x
    0.05
    =
    24.996.
    Figure3
    AreatotheRightoftheCriticalValue
    Degreesof
    Freedom
    0.9950.990.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005
    1
    — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
    2
    0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
    3
    0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
    12
    3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.299
    13
    3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
    14
    4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
    15
    4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
    16
    5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
    17
    5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
    18
    6.365 7.215 8.231 9.288 10.265 25.200 28.601 31.595 24.265 36.456
    InstudyingTableVI,wenoticethatthedegreesoffreedomarenumbered1
    to30inclusive,then Ifthenumberofdegreesoffreedomis
    notfoundinthetable,wefollowthepracticeofchoosingthedegreesoffree-
    domclosesttothatdesired.Ifthedegreesoffreedomareexactlybetweentwo
    values,findthemeanofthevalues.Forexample,tofindthecriticalvaluecorre-
    spondingto75degreesoffreedom,computethemeanofthecriticalvaluescor-
    respondingto70and80degreesoffreedom.
    40,50,60,
    Á
    ,100.
    Nowthatweunderstandthechi-squaredistribution,wecandiscussthe
    goodness-
    of-fit
    test.
    Definition
    A
    goodness-of-fittest
    isaninferentialprocedureusedtodetermine
    whetherafrequencydistributionfollowsaclaimeddistribution.
    Asanexample,wemightwanttotestwhetheradieisfair.Thiswouldmean
    theprobabilityofeachoutcomeiswhenadieiscast.Weexpressthisas
    H
    0
    :
    p
    Here’sanotherexample:AccordingtotheU.S.CensusBureau,in2000,
    19.0%ofthepopulationoftheUnitedStatesresidedintheNortheast;22.9%
    residedintheMidwest,35.6%residedintheSouth,and22.5%residedinthe
    West.WemightwanttotestwhetherthedistributionofU.S.residentsisthe
    sametodayasitwasin2000.Remember,thenullhypothesisisastatementof
    “nochange,”soforthistest,thenullhypothesisis
    ThedistributionofresidentsintheUnitedStatesisthesametodayasit
    wasin2000.
    0
    :
    Theideabehindtestingthesetypesofhypothesesistocomparetheactual
    numberofobservationsforeachcategoryofdatawiththenumberofobserva-
    tionswewouldexpectifthenullhypothesisweretrue.Ifasignificantdifference
    betweentheobservedcountsandexpectedcountsexists,wehaveevidence
    againstthenullhypothesis.
    Themethodforobtainingtheexpectedcountsisanextensionoftheex-
    pectedvalueofabinomialrandomvariable.Recallthatthemean(andthere-
    foreexpectedvalue)ofabinomialrandomvariablewith
    n
    independenttrials
    andprobabilityofsuccess,
    p
    ,isgivenby
    E
    = np
    .
     Section12.1Goodness-of-FitTest
    553
    ExpectedCounts
    Supposethereare
    n
    independenttrialsofanexperimentwith mutu-
    allyexclusivepossibleoutcomes.Let representtheprobabilityofobserv-
    ingthefirstoutcomeand representtheexpectedcountofthefirst
    outcome,representtheprobabilityofobservingthesecondoutcomeand
    representtheexpectedcountofthesecondoutcome,andsoon.Theex-
    pectedcountsforeachpossibleoutcomearegivenby
    InOtherWords
    Theexpectedcountforeachcategory
    isthenumberoftrialsoftheexperiment
    timestheprobabilityofsuccessinthe
    category.
    = np
    i
    for
    i
    =
    1,2,
    Á
    ,
    k
    EXAMPLE2
    FindingExpectedCounts
    Problem
    :
    Anurbaneconomistwishestodeterminewhetherthedistribution
    ofresidentsintheUnitedStatesisthesametodayasitwasin2000.Thatyear,
    19.0%ofthepopulationoftheUnitedStatesresidedintheNortheast,22.9%
    residedintheMidwest,35.6%residedintheSouth,and22.5%residedinthe
    West(basedondataobtainedfromtheCensusBureau).Iftheeconomist
    randomlyselects1500householdsintheUnitedStates,computetheexpected
    numberofhouseholdsineachregion,assumingthatthedistributionofhouse-
    holdsdidnotchangefrom2000.
    Approach
    Step1
    :
    Determinetheprobabilitiesforeachoutcome.
    Step2
    :
    Thereare trials(the1500householdssurveyed)oftheexper-
    iment.Weexpect ofthehouseholdssurveyedtoresideintheNorth-
    east, ofthehouseholdstoresideintheMidwest,andsoon.
    =
    1500
    np
    northeast
    np
    midwest
    HistoricalNote
    Solution
    Step1
    :
    Theprobabilitiesaretherelativefrequenciesfromthe2000distribution:
    and
    Step2
    :
    TheexpectedcountsforeachlocationwithintheUnitedStatesareas
    follows:
    Thegoodness-of-fittestwasinvented
    byKarlPearson(thePearsonof
    correlationcoefficientfame).
    Pearsonbelievedthatstatistics
    shouldbedonebydeterminingthe
    distributionofarandomvariable.
    Suchadeterminationcouldbemade
    onlybylookingatlargenumbersof
    data.ThisphilosophycausedPearson
    to“buttheads”withRonaldFisher,
    becauseFisherbelievedinanalyzing
    smallsamples.
    p
    northeast
    =
    0.190,
    p
    midwest
    =
    0.229,
    p
    south
    =
    0.356,
    p
    west
    =
    0.225.
    ExpectedcountofNortheast:
    np
    northeast
    =
    1500
    1
    0.190
    2
    =
    285
    ExpectedcountofMidwest:
    np
    midwest
    =
    1500
    1
    0.229
    2
    =
    343.5
    ExpectedcountofSouth:
    np
    south
    =
    1500
    1
    0.356
    2
    =
    534
    ExpectedcountofWest:
    np
    west
    =
    1500
    1
    0.225
    2
    =
    337.5
    Ofthe1500householdssurveyed,theeconomistexpects285householdsinthe
    Northeast,343.5householdsintheMidwest,534householdsintheSouth,and
    337.5householdsintheWestifthedistributionofresidentsoftheUnitedStates
    isthesametodayasitwasin2000.
    NowWorkProblem5.
    Totestahypothesis,wecomparetheobservedcountswiththeexpected
    counts.Iftheobservedcountsaresignificantlydifferentfromtheexpectedcounts,
    wehaveevidenceagainstthenullhypothesis.Toperformthistest,weneedatest
    statisticandsamplingdistribution.
    554
    Chapter12AdditionalInferentialProcedures
    TestStatisticforGoodness-of-FitTests
    Let representtheobservedcountsofcategory representtheexpect-
    edcountsofcategory
    i,k
    representthenumberofcategories,and
    n
    repre-
    sentthenumberofindependenttrialsofanexperiment.Thentheformula
    CAUTION
    Goodness-of-fittestsareused
    totesthypothesesregardingthe
    distributionofavariablebasedon
    asinglepopulation.Ifyouwishto
    comparetwoormorepopulations,you
    mustusethetestsforhomogeneity
    presentedinSection12.2.
    i
    ,
    E
    i =
    1,2,
    Á
    ,
    k
    approximatelyfollowsthechi-squaredistributionwith degreesof
    freedom,providedthat
    1.
    allexpectedfrequenciesaregreaterthanorequalto1(all )and
    2.
    nomorethan20%oftheexpectedfrequenciesarelessthan5.
    Note:
    for
    = np
    i
    =
    1,2,
    Á
    ,
    k
    FromExample2,therewere categories(Northeast,Midwest,South,and
    West).FortheNortheast,theexpectedfrequency,
    E
    ,is295.
    Nowthatweknowthedistributionofgoodness-of-fittests,wecanpresenta
    methodfortestinghypothesesregardingthedistributionofarandomvariable.
    TheGoodness-of-FitTest
    Totesthypothesesregardingadistribution,wecanusethestepsthatfollow.
    Step1
    :
    Determinethenullandalternativehypotheses:
    Therandomvariablefollowsacertaindistribution.
    Therandomvariabledoesnotfollowacertaindistribution.
    Step2
    :
    Decideonalevelofsignificance,dependingontheseriousnessof
    makingaTypeIerror.
    Step3
    :
    (a)
    Calculatetheexpectedcountsforeachofthe
    k
    categories.Theexpect-
    edcountsare for where
    n
    isthenumberoftri-
    alsand istheprobabilityofthe
    i
    thcategory,assumingthatthenull
    hypothesisistrue.
    (b)
    Verifythattherequirementsforthegoodness-of-fittestaresatisfied.
    1.
    Allexpectedcountsaregreaterthanorequalto1(all ).
    2.
    Nomorethan20%oftheexpectedcountsarelessthan5.
    (c)
    Computethe
    teststatistic:
    = np
    i
    =
    1,2,
    Á
    ,
    k
    CAUTION
    IfrequirementsinStep3(b)are
    notsatisfied,oneoptionisto
    combinetwoofthelow-frequency
    categoriesintoasinglecategory.
    Note:
    istheobservedcountforthe
    i
    thcategory.
    ClassicalApproach
    P-ValueApproach
    Step4
    :
    UseTableVItoobtainanapproximate
    P
    -valuebydeterminingtheareaunderthechi-square
    distributionwith degreesoffreedomtothe
    rightoftheteststatistic.SeeFigure5.
    Step4
    :
    Determinethecriticalvalue.Allgoodness-of-fit
    testsareright-tailedtests,sothecriticalvalueis with
    degreesoffreedom.SeeFigure4.
    (
    continuedonnextpage
    )
      [ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • rafalstec.xlx.pl
  • 
    Wszelkie Prawa Zastrzeżone! Jedyną nadzieją jest... nadzieja. Design by SZABLONY.maniak.pl.