![]() |
|||||
![]() |
|||||
![]() |
|||||
Strona startowa Fiddle Faddle« & Screaming Yellow Zonkers«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku Fatburger«, przepisy, Przepisy Pizza Hut KFC MC DONALDS, Przepisy po angielsku Food 20 adjectives, ANGIELSKI, !!!!!!!!!!pomoce, słownictwo, food Frommer's Naples and the Amalfi Coast day BY Day, Travel Guides- Przewodniki (thanx angielski i stuff) Frommer s Sicily Day By Day, Travel Guides- Przewodniki (thanx angielski i stuff) Fuyumi Ono - Twelve Kingdoms 01 - Shadow of the Moon a Sea of Shadows, Angielskie [EN](4)(2) Farago&Zwijnenberg (eds) - Compelling Visuality ~ The work of art in and out of history, sztuka i nie tylko po angielsku Forex Study Book For Successful Foreign Exchange Dealing, gielda walutowa, Angielskie Fabulous Creatures Mythical Monsters and Animal Power Symbols-A Handbook, Angielski Functioning in the Real World Precalculus - Chapter 06, Angielskie [EN](4)(2) |
Fundamentals of Statistics - Chapter12, Angielskie [EN](4)(2)[ Pobierz całość w formacie PDF ]12 Additional InferentialProcedures CHAPTER Outline 12.1 Goodness-of-FitTest 12.2 TestsforIndependenceandtheHomogeneityof Proportions 12.3 TestingtheSignificanceoftheLeast-Squares RegressionModel 12.4 ConfidenceandPredictionIntervals " ChapterReview " CaseStudy:FeelingLucky?Well,AreYou? (OnCD) DECISIONS Aretherebenefitstoattendingcollege?Ifso,whatarethey?SeetheDecisions projectonpage573. PuttingItAllTogether InChapters9–11,weintroducedstatisticalmethodsthat canbeusedtotesthypothesesregardingapopulation parametersuchasor p .Thischaptercanbeconsidered intwoparts.Thefirstpart,Sections12.1and12.2,intro- ducesinferenceusingthechi-squaredistribution. Often,ratherthanbeinginterestedintesting a hypothesesregardingaparameterofaprobabilitydistri- bution,weareinterestedintestinghypothesesregarding theentireprobabilitydistribution.Forexample,wemight wishtotestwhetherthedistributionofcolorsinabagof plainM&Mcandiesis13%brown,14%yellow,13%red, 20%orange,24%blue,and16%green.Weintroduce methodsfortestinghypothesessuchasthisinSection12.1. InSection12.2,wediscussamethodthatcanbeused todeterminewhethertwovariablesareindependentbased onasample.WeconcludeSection12.2byintroducingtests forhomogeneity.Thisprocedureisusedtocompare proportionsfromtwoormorepopulations.Itisanexten- sionofthetwo-sample z -testforproportionsdiscussedin Section11.3. Thesecondpartofthischapterextendsinferential statisticstotheleast-squaresregressionline.Sections 12.3and12.4introduceinferentialmethodsthatcanbe usedontheleast-squaresregressionline. InChapter4,wepresentedmethodsfordescribing therelationbetweentwovariables-bivariatedata. InSection12.3,weusethemethodsofhypothesis testingfirstpresentedinChapter10totestwhethera linearrelationexistsbetweentwoquantitativevariables. InSection12.4,weconstructconfidenceintervals aboutthepredictedvalueoftheleast-squaresregression line. 550 Section12.1Goodness-of-FitTest 551 12.1 Goodness-of-FitTest PreparingforThisSection Beforegettingstarted,reviewthefollowing: • Expectedvalue(Section6.1,pp.291–292) • Meanofabinomialrandomvariable(Section6.2, pp.305–306) • Mutuallyexclusive(Section5.2,pp.238–241) Objective Performagoodness-of-fittest PerformaGoodness-of-FitTest Inthissection,wepresentaprocedurethatcanbeusedtotesthypothesesre- gardingaprobabilitydistribution.Forexample,wemightwanttotestwhether thedistributionofplainM&Mcandiesinabagis13%brown,14%yellow,13% red,20%orange,24%blue,and16%green.Orwemightwanttotestifthe numberofhitsaplayergetsinhisnextfourat-batsfollowsabinomialdistribu- tionwith and Weusethesymbol chi-square,pronounced“kigh-square”(torhyme with“sky-square”),torepresentvaluesofthechi-squaredistribution.Wecan findcriticalvaluesofthechi-squaredistributioninTableVIinAppendixAof thetext.BeforediscussinghowtoreadTableVI,weintroducecharacteristicsof thechi-squaredistribution. = 0.298. Figure1 CharacteristicsoftheChi-SquareDistribution 1. Itisnotsymmetric. 2. Theshapeofthechi-squaredistributiondependsonthedegreesof freedom,justlikeStudent’s t -distribution. 3. Asthenumberofdegreesoffreedomincreases,thechi-squaredistribu- tionbecomesmoresymmetric,asillustratedinFigure1. 4. Thevaluesof arenonnegative.Thatis,thevaluesof aregreater thanorequalto0. with2degreesoffreedom with5degreesoffreedom with10degreesoffreedom 0.2 with15degreesoffreedom with30degreesoffreedom 0.1 0 1 0 2 0 3 0 4 0 5 0 TableVIisstructuredsimilarlytoTableVforthe t -distribution.Theleftcol- umnrepresentsthedegreesoffreedom,andthetoprowrepresentsthearea underthechi-squaredistributiontotherightofthecriticalvalue.Weusetheno- tation todenotethecritical suchthattheareaunderthechi-square distributiontotherightof is -value EXAMPLE1 FindingCriticalValuesfortheChi-SquareDistribution Problem : Findthecriticalvaluesthatseparatethemiddle90%ofthechi-square distributionfromthe5%areaineachtail,assuming15degreesoffreedom. Approach : Weperformthefollowingstepstoobtainthecriticalvalues. Step1 Figure2 Area $ 0.05 Area $ 0.05 : Drawachi-squaredistributionwiththecriticalvaluesandareaslabeled. Step2 : UseTableVItofindthecriticalvalues. Area $ 0.90 Solution Step1 : Figure2showsthechi-squaredistributionwith15degreesoffreedom andtheunknowncriticalvalueslabeled.Theareatotherightof is0.05.The areatotherightof Step2 : Figure3showsapartialrepresentationofTableVI.Therowcontaining 15degreesoffreedomisboxed.Thecolumnscorrespondingtoanareatothe x 0.95 x 0.05 x 2 2 x 0.05 2 0.95 is0.95. 552 Chapter12AdditionalInferentialProcedures rightof0.95and0.05arealsoboxed.Thecriticalvaluesare and x 0.95 = 7.261 x 0.05 = 24.996. Figure3 AreatotheRightoftheCriticalValue Degreesof Freedom 0.9950.990.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 1 — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879 2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597 3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838 12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.299 13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718 18 6.365 7.215 8.231 9.288 10.265 25.200 28.601 31.595 24.265 36.456 InstudyingTableVI,wenoticethatthedegreesoffreedomarenumbered1 to30inclusive,then Ifthenumberofdegreesoffreedomis notfoundinthetable,wefollowthepracticeofchoosingthedegreesoffree- domclosesttothatdesired.Ifthedegreesoffreedomareexactlybetweentwo values,findthemeanofthevalues.Forexample,tofindthecriticalvaluecorre- spondingto75degreesoffreedom,computethemeanofthecriticalvaluescor- respondingto70and80degreesoffreedom. 40,50,60, Á ,100. Nowthatweunderstandthechi-squaredistribution,wecandiscussthe goodness- of-fit test. Definition A goodness-of-fittest isaninferentialprocedureusedtodetermine whetherafrequencydistributionfollowsaclaimeddistribution. Asanexample,wemightwanttotestwhetheradieisfair.Thiswouldmean theprobabilityofeachoutcomeiswhenadieiscast.Weexpressthisas H 0 : p Here’sanotherexample:AccordingtotheU.S.CensusBureau,in2000, 19.0%ofthepopulationoftheUnitedStatesresidedintheNortheast;22.9% residedintheMidwest,35.6%residedintheSouth,and22.5%residedinthe West.WemightwanttotestwhetherthedistributionofU.S.residentsisthe sametodayasitwasin2000.Remember,thenullhypothesisisastatementof “nochange,”soforthistest,thenullhypothesisis ThedistributionofresidentsintheUnitedStatesisthesametodayasit wasin2000. 0 : Theideabehindtestingthesetypesofhypothesesistocomparetheactual numberofobservationsforeachcategoryofdatawiththenumberofobserva- tionswewouldexpectifthenullhypothesisweretrue.Ifasignificantdifference betweentheobservedcountsandexpectedcountsexists,wehaveevidence againstthenullhypothesis. Themethodforobtainingtheexpectedcountsisanextensionoftheex- pectedvalueofabinomialrandomvariable.Recallthatthemean(andthere- foreexpectedvalue)ofabinomialrandomvariablewith n independenttrials andprobabilityofsuccess, p ,isgivenby E = np . Section12.1Goodness-of-FitTest 553 ExpectedCounts Supposethereare n independenttrialsofanexperimentwith mutu- allyexclusivepossibleoutcomes.Let representtheprobabilityofobserv- ingthefirstoutcomeand representtheexpectedcountofthefirst outcome,representtheprobabilityofobservingthesecondoutcomeand representtheexpectedcountofthesecondoutcome,andsoon.Theex- pectedcountsforeachpossibleoutcomearegivenby InOtherWords Theexpectedcountforeachcategory isthenumberoftrialsoftheexperiment timestheprobabilityofsuccessinthe category. = np i for i = 1,2, Á , k EXAMPLE2 FindingExpectedCounts Problem : Anurbaneconomistwishestodeterminewhetherthedistribution ofresidentsintheUnitedStatesisthesametodayasitwasin2000.Thatyear, 19.0%ofthepopulationoftheUnitedStatesresidedintheNortheast,22.9% residedintheMidwest,35.6%residedintheSouth,and22.5%residedinthe West(basedondataobtainedfromtheCensusBureau).Iftheeconomist randomlyselects1500householdsintheUnitedStates,computetheexpected numberofhouseholdsineachregion,assumingthatthedistributionofhouse- holdsdidnotchangefrom2000. Approach Step1 : Determinetheprobabilitiesforeachoutcome. Step2 : Thereare trials(the1500householdssurveyed)oftheexper- iment.Weexpect ofthehouseholdssurveyedtoresideintheNorth- east, ofthehouseholdstoresideintheMidwest,andsoon. = 1500 np northeast np midwest HistoricalNote Solution Step1 : Theprobabilitiesaretherelativefrequenciesfromthe2000distribution: and Step2 : TheexpectedcountsforeachlocationwithintheUnitedStatesareas follows: Thegoodness-of-fittestwasinvented byKarlPearson(thePearsonof correlationcoefficientfame). Pearsonbelievedthatstatistics shouldbedonebydeterminingthe distributionofarandomvariable. Suchadeterminationcouldbemade onlybylookingatlargenumbersof data.ThisphilosophycausedPearson to“buttheads”withRonaldFisher, becauseFisherbelievedinanalyzing smallsamples. p northeast = 0.190, p midwest = 0.229, p south = 0.356, p west = 0.225. ExpectedcountofNortheast: np northeast = 1500 1 0.190 2 = 285 ExpectedcountofMidwest: np midwest = 1500 1 0.229 2 = 343.5 ExpectedcountofSouth: np south = 1500 1 0.356 2 = 534 ExpectedcountofWest: np west = 1500 1 0.225 2 = 337.5 Ofthe1500householdssurveyed,theeconomistexpects285householdsinthe Northeast,343.5householdsintheMidwest,534householdsintheSouth,and 337.5householdsintheWestifthedistributionofresidentsoftheUnitedStates isthesametodayasitwasin2000. NowWorkProblem5. Totestahypothesis,wecomparetheobservedcountswiththeexpected counts.Iftheobservedcountsaresignificantlydifferentfromtheexpectedcounts, wehaveevidenceagainstthenullhypothesis.Toperformthistest,weneedatest statisticandsamplingdistribution. 554 Chapter12AdditionalInferentialProcedures TestStatisticforGoodness-of-FitTests Let representtheobservedcountsofcategory representtheexpect- edcountsofcategory i,k representthenumberofcategories,and n repre- sentthenumberofindependenttrialsofanexperiment.Thentheformula CAUTION Goodness-of-fittestsareused totesthypothesesregardingthe distributionofavariablebasedon asinglepopulation.Ifyouwishto comparetwoormorepopulations,you mustusethetestsforhomogeneity presentedinSection12.2. i , E i = 1,2, Á , k approximatelyfollowsthechi-squaredistributionwith degreesof freedom,providedthat 1. allexpectedfrequenciesaregreaterthanorequalto1(all )and 2. nomorethan20%oftheexpectedfrequenciesarelessthan5. Note: for = np i = 1,2, Á , k FromExample2,therewere categories(Northeast,Midwest,South,and West).FortheNortheast,theexpectedfrequency, E ,is295. Nowthatweknowthedistributionofgoodness-of-fittests,wecanpresenta methodfortestinghypothesesregardingthedistributionofarandomvariable. TheGoodness-of-FitTest Totesthypothesesregardingadistribution,wecanusethestepsthatfollow. Step1 : Determinethenullandalternativehypotheses: Therandomvariablefollowsacertaindistribution. Therandomvariabledoesnotfollowacertaindistribution. Step2 : Decideonalevelofsignificance,dependingontheseriousnessof makingaTypeIerror. Step3 : (a) Calculatetheexpectedcountsforeachofthe k categories.Theexpect- edcountsare for where n isthenumberoftri- alsand istheprobabilityofthe i thcategory,assumingthatthenull hypothesisistrue. (b) Verifythattherequirementsforthegoodness-of-fittestaresatisfied. 1. Allexpectedcountsaregreaterthanorequalto1(all ). 2. Nomorethan20%oftheexpectedcountsarelessthan5. (c) Computethe teststatistic: = np i = 1,2, Á , k CAUTION IfrequirementsinStep3(b)are notsatisfied,oneoptionisto combinetwoofthelow-frequency categoriesintoasinglecategory. Note: istheobservedcountforthe i thcategory. ClassicalApproach P-ValueApproach Step4 : UseTableVItoobtainanapproximate P -valuebydeterminingtheareaunderthechi-square distributionwith degreesoffreedomtothe rightoftheteststatistic.SeeFigure5. Step4 : Determinethecriticalvalue.Allgoodness-of-fit testsareright-tailedtests,sothecriticalvalueis with degreesoffreedom.SeeFigure4. ( continuedonnextpage ) [ Pobierz całość w formacie PDF ] |
||||
![]() |
|||||
Wszelkie Prawa Zastrzeżone! Jedyną nadzieją jest... nadzieja. Design by SZABLONY.maniak.pl. |
![]() |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |